حکیم الرعایا

Infrasound صدا های زیر آستانه شنوایی


Infrasound arrays at infrasound monitoring station in Qaanaaq, Greenland

Infrasound, sometimes referred to as low-frequency sound, is sound



 that is lower in frequency than 20 Hz or cycles per second, the "normal" limit of human hearing. Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the sound pressure must be sufficiently high. The ear is the primary organ for sensing infrasound, but at higher intensities it is possible to feel infrasound vibrations in various parts of the body.

The study of such sound waves is sometimes referred to as infrasonics, covering sounds beneath 20 Hz down to 0.1 Hz and rarely to 0.001 Hz. People use this frequency range for monitoring earthquakes, charting rock and petroleum formations below the earth, and also in ballistocardiography and seismocardiography to study the mechanics of the heart.

Infrasound is characterized by an ability to cover long distances and get around obstacles with little dissipation. In music, acoustic waveguide methods, such as a large pipe organ or, for reproduction, exotic loudspeaker designs such as transmission linerotary woofer, or traditional subwoofer designs can produce low-frequency sounds, including near-infrasound. Subwoofers designed to produce infrasound are capable of sound reproduction an octave or more below that of most commercially available subwoofers, and are often about 10 times the size.[citation needed]



Infrasound is defined by the American National Standards Institute as "sound at frequencies less than 20 Hz."

History and studyEdit

The Allies of World War I first used infrasound to locate artillery.[1] One of the pioneers in infrasonic research was French scientist Vladimir Gavreau.[2] His interest in infrasonic waves first came about in his laboratory during the 1960s, when he and his laboratory assistants experienced shaking laboratory equipment and pain in the eardrums, but his microphones did not detect audible sound. He concluded it was infrasound caused by a large fan and duct system, and soon got to work preparing tests in the laboratories. One of his experiments was an infrasonic whistle, an oversized organ pipe.[3][4][5]


Patent for a double bass reflex loudspeaker enclosure design intended to produce infrasonic frequencies ranging from 5 to 25 hertz, of which traditional subwoofer designs are not readily capable.

Infrasound can result from both natural and man-made sources:

  • Human singers: some vocalists, including Tim Storms, can produce notes in the infrasound range.[25]

Animal reactionsEdit

Some animals have been thought to perceive the infrasonic waves going through the earth, caused by natural disasters, and to use these as an early warning. An example of this is the 2004 Indian Ocean earthquake and tsunami. Animals were reported to have fled the area hours before the actual tsunami hit the shores of Asia.[29][30] It is not known for sure that this is the cause; some have suggested that it may have been the influence of electromagnetic waves, and not of infrasonic waves, that prompted these animals to flee.[31]

Research in 2013 by Jon Hagstrum of the US Geological Survey suggests that homing pigeons use low-frequency infrasound to navigate.[32]

Human reactionsEdit

20 Hz is considered the normal low-frequency limit of human hearing. When pure sine waves are reproduced under ideal conditions and at very high volume, a human listener will be able to identify tones as low as 12 Hz.[33] Below 10 Hz it is possible to perceive the single cycles of the sound, along with a sensation of pressure at the eardrums.

From about 1000 Hz, the dynamic range of the auditory system decreases with decreasing frequency. This compression is observable in the equal-loudness-level contours, and it implies that even a slight increase in level can change the perceived loudness from barely audible to loud. Combined with the natural spread in thresholds within a population, its effect may be that a very low-frequency sound which is inaudible to some people may be loud to others.

One study has suggested that infrasound may cause feelings of awe or fear in humans. It has also been suggested that since it is not consciously perceived, it may make people feel vaguely that odd or supernatural events are taking place.[34] Engineer Vic Tandy provided such an explanation in his investigations in the 1980s. Tandy, while working in his laboratory, started to feel uneasy and as if a supernatural presence was with him. Later, he could attribute these feelings to a broken metal fan that was causing noises of a frequency that triggered them. The noise could not be perceived by the human ear, but Tandy's body reacted to the 19 Hz sounds.[35]

A scientist working at Sydney University's Auditory Neuroscience Laboratory reports growing evidence that infrasound may affect some people's nervous system by stimulating the vestibular system, and this has shown in animal models an effect similar to sea sickness.[36]

In research conducted in 2006 focusing on the impact of sound emissions from wind turbines on the nearby population, perceived infrasound has been associated to effects such as annoyance or fatigue, depending on its intensity, with little evidence supporting physiological effects of infrasound below the human perception threshold.[37] Later studies, however, have linked inaudible infrasound to effects such as fullness, pressure or tinnitus, and acknowledged the possibility that it could disturb sleep.[38] Other studies have also suggested associations between noise levels in turbines and self-reported sleep disturbances in the nearby population, while adding that the contribution of infrasound to this effect is still not fully understood.[39][40]

In a study at Ibaraki University in Japan, researchers said EEG tests showed that the infrasound produced by wind turbines was “considered to be an annoyance to the technicians who work close to a modern large-scale wind turbine.”[41][42][43]

Infrasonic 17 Hz tone experimentEdit

On 31 May 2003 a group of UK researchers held a mass experiment, where they exposed some 700 people to music laced with soft 17 Hz sine waves played at a level described as "near the edge of hearing", produced by an extra-long-stroke subwoofer mounted two-thirds of the way from the end of a seven-meter-long plastic sewer pipe. The experimental concert (entitled Infrasonic) took place in the Purcell Roomover the course of two performances, each consisting of four musical pieces. Two of the pieces in each concert had 17 Hz tones played underneath.[44][45]

In the second concert, the pieces that were to carry a 17 Hz undertone were swapped so that test results would not focus on any specific musical piece. The participants were not told which pieces included the low-level 17 Hz near-infrasonic tone. The presence of the tone resulted in a significant number (22%) of respondents reporting feeling uneasy or sorrowful, getting chills down the spine or nervous feelings of revulsion or fear.[44][45]

In presenting the evidence to the British Association for the Advancement of Science, Professor Richard Wiseman said "These results suggest that low frequency sound can cause people to have unusual experiences even though they cannot consciously detect infrasound. Some scientists have suggested that this level of sound may be present at some allegedly haunted sites and so cause people to have odd sensations that they attribute to a ghost—our findings support these ideas."[34]

Suggested relationship to ghost sightingsEdit

Psychologist Richard Wiseman of the University of Hertfordshire suggests that the odd sensations that people attribute to ghosts may be caused by infrasonic vibrations. Vic Tandy, experimental officer and part-time lecturer in the school of international studies and law at Coventry University, along with Dr. Tony Lawrence of the University's psychology department, wrote in 1998 a paper called "Ghosts in the Machine" for the Journal of the Society for Psychical Research. Their research suggested that an infrasonic signal of 19 Hz might be responsible for some ghost sightings. Tandy was working late one night alone in a supposedly haunted laboratory at Warwick, when he felt very anxious and could detect a grey blob out of the corner of his eye. When Tandy turned to face the grey blob, there was nothing.

The following day, Tandy was working on his fencing foil, with the handle held in a vice. Although there was nothing touching it, the blade started to vibrate wildly. Further investigation led Tandy to discover that the extractor fan in the lab was emitting a frequency of 18.98 Hz, very close to the resonant frequency of the eye given as 18 Hz by NASA.[46] This, Tandy conjectured, was why he had seen a ghostly figure—it was, he believed, an optical illusion caused by his eyeballs resonating. The room was exactly half a wavelength in length, and the desk was in the centre, thus causing a standing wave which caused the vibration of the foil.[47]

Tandy investigated this phenomenon further and wrote a paper entitled The Ghost in the Machine.[48] He carried out a number of investigations at various sites believed to be haunted, including the basement of the Tourist Information Bureau next to Coventry Cathedral[49][50] and Edinburgh Castle.[51][52]

Infrasound for nuclear detonation detectionEdit

Infrasound is one of several techniques used to identify if a nuclear detonation has occurred. A network of 60 infrasound stations, in addition to seismic and hydroacoustic stations, comprise the International Monitoring System (IMS) that is tasked with monitoring compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT).[53] IMS Infrasound stations consist of eight microbarometer sensors and space filters arranged in an array covering an area of approximately 1 to 9 km^2.[53][54] The space filters used are radiating pipes with inlet ports along their length, designed to average out pressure variations like wind turbulence for more precise measurements.[54] The microbarometers used are designed to monitor frequencies below approximately 20 hertz.[53] Sound waves below 20 hertz have longer wavelengths and are not easily absorbed, allowing for detection across large distances.[53]

Infrasound wavelengths can be generated artificially through detonations and other human activity, or naturally from earthquakes, severe weather, lightning, and other sources.[53] Like forensic seismology, algorithms and other filter techniques are required to analyze gathered data and characterize events to determine if a nuclear detonation has actually occurred. Data is transmitted from each station via secure communication links for further analysis. A digital signature is also embedded in the data sent from each station to verify if the data is authentic.[55]

Detection and measurementEdit

NASA Langley has designed and developed an infrasonic detection system that can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone PCB Model 377M06, having a 3-inch membrane diameter, and a small, compact windscreen.[56] Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized.[56]

The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and has a sufficiently thick wall to ensure structural stability.[57] Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability.

The microphone design differs from that of a conventional audio system in that the peculiar features of infrasound are taken into account. First, infrasound propagates over vast distances through the Earth's atmosphere as a result of very low atmospheric absorption and of refractive ducting that enables propagation by way of multiple bounces between the Earth's surface and the stratosphere. A second property that has received little attention is the great penetration capability of infrasound through solid matter – a property utilized in the design and fabrication of the system windscreens.[57]

Thus the system fulfills several instrumentation requirements advantageous to the application of acoustics: (1) a low-frequency microphone with especially low background noise, which enables detection of low-level signals within a low-frequency passband; (2) a small, compact windscreen that permits (3) rapid deployment of a microphone array in the field. The system also features a data acquisition system that permits real time detection, bearing, and signature of a low-frequency source